

KG-Prolog Mapper
 Deliverable ID: D4.2

 Dissemination Level: PU

 Project Acronym: AISA

 Grant: 892618
 Call: H2020-SESAR-2019-2
 Topic: SESAR-ER4-01-2019
 Consortium Coordinator: FTTS
 Edition date: 30 September 2021
 Edition: 00.01.00
 Template Edition: 02.00.02

EXPLORATORY RESEARCH
Ref. Ares(2021)5978735 - 01/10/2021

2

Authoring & Approval

Authors of the document

Name/Beneficiary Position/Title Date

Bernd Neumayr/JKU University Assistant (Senior PostDoc) 29 September 2021

Marlene Hartmann/JKU Junior Researcher 24 September 2021

Reviewers internal to the project

Name/Beneficiary Position/Title Date

Tomislav Radišić/FTTS Assistant Professor 27 September 2021

Michael Schrefl/JKU Full Professor 27 September 2021

Ivana Hajdinjak/FTTS Project Associate 27 September 2021

Approved for submission to the SJU By - Representatives of beneficiaries involved in the project

Name/Beneficiary Position/Title Date

Tomislav Radišić/FTTS Project Coordinator 29 September 2021

Rejected By - Representatives of beneficiaries involved in the project

Name/Beneficiary Position/Title Date

KG-PROLOG MAPPER

3

Document History

Edition Date Status Author Justification

00.00.01 15/07/2021 First draft B. Neumayr New document

00.00.02 24/09/2021 First full version B. Neumayr Document complete

00.00.03 28/09/2021 Comments integrated B. Neumayr Comments from
reviewers integrated

00.01.00 30/09/2021 First issue B. Neumayr First issue

KG-PROLOG MAPPER

4

Copyright Statement

© 2021 AISA Consortium.

All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

KG-PROLOG MAPPER

5

AISA
AI SITUATIONAL AWARENESS FOUNDATION FOR ADVANCING AUTOMATION

This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under
grant agreement No 892618 under European Union’s Horizon 2020 research and innovation
programme.

Abstract

The AISA KG introduced with Deliverable D4.1 is a RDF dataset holding all the static and dynamic data
and metadata relevant for AI situational awareness. The AISA KG is stored on a KG server and queried
and updated via SPARQL. The KG schema is specified in RDF Schema and SHACL. Data and metadata
are added dynamically to the KG and processed and queried via application-specific engines mainly
implemented in Java. A central control component implemented in Java is responsible for recurring
invocation of the different engines. Advanced reasoning tasks over the KG are to be realized based on
rule-based knowledge represented in Prolog.

The design problem tackled by Task 4.2 is to improve accessing the KG from Prolog by designing a KG-
Prolog mapper that takes care of data interchange and mapping between Prolog engine and KG, so
that Prolog programmers can easily develop Prolog programs, which read from and write to the KG.
We investigate schema-oblivious and schema-aware KG-Prolog mapping. The schema-oblivious
approach can be realized easily but is unwieldy for Prolog programmers when it comes to reading
complex KG data. Schema-aware KG-Prolog mapping provides the contents of the KG in a form
amenable to Prolog programmers according to the KG schema. We implement the schema-aware
approach in three different variants and conduct preliminary performance studies for comparison. We
provide a full integration of Prolog engine and AISA KG system for the schema-oblivious approach
together with one variant of the schema-aware approach.

KG-PROLOG MAPPER

6

1 Table of Contents

Executive Summary ... 9

1 Introduction ... 10

1.1 Definitions... 10

1.2 Purpose of the document... 10

1.3 Structure and methodology ... 10

1.4 Relations to other documents .. 11

2 KG Access from Prolog ... 12

2.1 Prolog – A very brief introduction to relevant aspects ... 12

2.2 Schema-oblivious approach ... 14

2.3 Schema-aware approach.. 15

2.4 Summary and Refinement of Design Problems ... 16

3 Realization of schema-aware approach .. 18

3.1 Overview ... 18

3.2 Generating the Prolog schema from RDFS/SHACL ... 19

3.3 Mapping Variant A - SPARQL queries in Java .. 20

3.4 Mapping Variant B – SPARQL queries in Prolog ... 21

3.5 Mapping Variant C – Mapping Rules in Prolog .. 22

4 Performance Studies .. 24

4.1 Setup of Performance Studies .. 24

4.2 Performance Results of Mapping Variant A .. 26

4.3 Performance Results of Mapping Variant B .. 27

4.4 Performance Results of Mapping Variant C... 29

4.5 Summary ... 31

5 Handling of Data Types and Missing Values ... 32

5.1 Value handling in the different mapping realization variants .. 32

5.2 NilReasons .. 35

5.3 Values without Unit of Measurement .. 36

5.4 Values with Unit of Measurement .. 37

5.5 Indeterminate Position and DateTime .. 39

5.6 Missing Values ... 40

KG-PROLOG MAPPER

7

5.7 Lists ... 40

6 Integration of Prolog with the Proof-of-Concept KG System 42

7 Results ... 45

References .. 46

Appendix A Glossary .. 47

Appendix B Technical Documentation .. 48

B.1 Overview of GitHub repository... 48

B.2 Running the preliminary performance studies .. 48

B.3 Testing mapping variants by comparing resulting input facts .. 50

KG-PROLOG MAPPER

8

List of Figures

Figure 1 Conceptual architecture of the schema-oblivious approach .. 14

Figure 2 Schema-oblivious mapping example ... 15

Figure 3 Schema-aware mapping example ... 16

Figure 4 Conceptual architecture of the schema-aware approach ... 18

Figure 5 Realization variants for schema-specific mapping rules or queries in Prolog or Java 19

Figure 6 Performance results of mapping variant A. KG data size scaled from 1 data copy (485 RDF
quadruples) to 1000 data copies (485000 RDF quadruples). .. 27

Figure 7 Performance results of mapping variant B .. 28

Figure 8 Performance results of mapping variant B2 .. 29

Figure 9 Performance results of mapping variant C .. 30

Figure 10 Total execution time of different mapping variants ... 31

Figure 11 SPARQL query of mapping variant A ... 32

Figure 12 Prolog module with embedded SPARQL query of mapping variant B 33

Figure 13 Prolog methods for data type handling of mapping variant B .. 34

Figure 14 Mapping rule of mapping variant C ... 35

Figure 15 Conceptual architecture of the integrated KG-Prolog mapper ... 42

Figure 16 Prolog program global.pl ... 43

Figure 17 Fragment from PrologModule.java ... 44

Figure 18 Sample Prolog module prolog1 ... 44

KG-PROLOG MAPPER

9

Executive Summary

This document describes AISA Deliverable D4.2. The developed software prototypes are available open

source as GitHub repository1. The deliverable consists of three realization variants of the schema-

aware approach and the sample use and integration of the schema-oblivious and one variant of the

schema-aware approach into the KG system introduced with Deliverable D4.1.

Intended Audience

This document is intended for use by those employed within SESAR Joint Undertaking and by the
experts from the ATM community, other professionals working on research and development in the
fields of data and knowledge engineering and information management, those employed in
EUROCONTROL and the ANSPs who might take advantage of the proposed methods. The components
described in this document should act as central components of the AI Situational Awareness System
developed in the project and act as technical basis for further developments at a later stage of the
AISA project. In particular, this document will be useful to partners involved in the project as a basis
for further development in WP4 and WP5.

1 https://github.com/jku-win-dke/AISA-KG-Prolog-Mapper

KG-PROLOG MAPPER

10

1 Introduction

In Task 4.2 we have developed three variants of the RDFS/SHACL-to-Prolog mapper. This document
describes these developments and the integration of the RDFS/SHACL-to-Prolog mapper into the
proof-of-concept prototype KG system from Task 4.1.

1.1 Definitions

In the technical scope of this deliverable we give very specific technical meaning to otherwise broad
terms.

Knowledge Graph (KG). A knowledge graph is a persistent RDF dataset comprising data and metadata.
An RDF dataset is a set of named RDF graphs each consisting of a set of RDF statements. An RDF
statement is a triple of the form <subject, predicate, object>. An RDF dataset can also be seen as a set
of <subject, predicate, object, graph> quadruples. In general, an RDF dataset might also contain one
unnamed default RDF graph, but we do not make use of the default graph. The schema of the contents
of the KG is specified using RDF Schema (RDFS)2 and the Shapes Constraint Language (SHACL)3.

KG System. By KG system we refer to (1) the KG, (2) the application-independent software components
for storing, processing and querying the KG, (3) a set of application-specific engines which are
responsible for loading, querying, inserting, processing, importing and exporting data and metadata in
the KG and (4) a control component which invokes the different engines.

1.2 Purpose of the document

The purpose of this document is to describe the work undertaken in Task 4.2 to develop building blocks
for the implementation of a system that serves to assess the concept of AI situational awareness. The
current version sets the way for the forthcoming developments of WP 4 as well as Task 5.1 in the AISA
project. The KG system architecture proposed and the software described in this document may evolve
together with evolving requirements in the remainder of WP4 and Task 5.1.

1.3 Structure and methodology

This document describes the software developed in Task 4.2 (Knowledge Graph to Prolog Mapper and
its integration into the Knowledge Graph system). Chapter 2 gives a brief introduction to relevant

2 https://www.w3.org/TR/rdf-schema/

3 https://www.w3.org/TR/shacl/

KG-PROLOG MAPPER

11

aspects of Prolog, describes the characteristics of schema-oblivious and schema-aware mapping
approaches and provides a refined characterizaton of the design problem to be solved. Chapter 3
discusses the realization of the schema-aware approach and introduces three different realization
variants. Chapter 4 describes the the conducted performance studies. Chapter 5 goes into detail about
the handling of data types and missing values. Chapter 6 describes the integration of the KG-Prolog
mapper in the Proof-of-Concept KG system introduced with Deliverable D4.1. Chapter 7 summarizes
the results of Task 4.2.

Appendix A provides a glossary of used acronyms. Appendix B provides technical documentation about
the Github repository and about conducting the performance studies.

1.4 Relations to other documents

The document is linked to project deliverables:

• AISA D2.1: Concept of Operations for AI Situational Awareness System

• AISA D4.1: Proof-of-concept KG System

KG-PROLOG MAPPER

12

2 KG Access from Prolog

In this chapter we introduce the problem of accessing the AISA KG from Prolog. We give a brief
overview of relevant aspects of Prolog, discuss two generic approaches for accessing KGs from Prolog,
the schema-oblivious and the schema-aware approach, and introduce our design goals and knowledge
questions for the KG-Prolog mapper.

Let us, first, briefly revisit the proof-of-concept KG system introduced with Deliverable D4.1 with which
the KG-Prolog mapper will be integrated The application-independent software components of the KG
System are bundled in an instance of Apache Jena Fuseki4 running as a separate KG server process.
Application-specific engines are realized as KG modules implemented by subclassing Java classes
provided with the Java library from D4.1 which builds on the Apache Jena Semantic Web Library5 [3].
The functionality provided by these KG modules is invoked by a control component. Every invocation
of a KG module produces a new named graph that is added to the KG. The control component together
with the modules run as KG manager Java process. The KG modules and the control component
communicate with the KG server via SPARQL Query6, SPARQL Update7, SPARQL Protocol8, and the
SPARQL Graph Store Protocol9.

2.1 Prolog – A very brief introduction to relevant aspects

Assuming basic knowledge of Prolog, in this section we only discuss some specifically relevant concepts

of Prolog as well as Prolog software packages used in AISA.

SWI-Prolog10[1] is a free implementation of Prolog and very well suited as a starting point for a KG-
Prolog mapper as it provides an in-memory RDF database [2] as well as a SPARQL client library.

By Prolog engine we refer to an instance of SWI-Prolog running as a process. Client applications
communicate with the Prolog engine via queries. Prolog programs are compiled and loaded into the
Prolog engine. The Prolog engine makes predicates defined in these programs available for querying.

4 https://jena.apache.org/documentation/fuseki2/

5 https://jena.apache.org/index.html

6 https://www.w3.org/TR/sparql11-query/

7 https://www.w3.org/TR/sparql11-update/

8 https://www.w3.org/TR/sparql11-protocol/

9 https://www.w3.org/TR/sparql11-http-rdf-update/

10 https://www.swi-prolog.org/

KG-PROLOG MAPPER

13

Predicates may be defined by asserted facts and/or by rules. Prolog programs loaded to a Prolog engine
define a shared database (see below). Queries and rules may refer to built-in predicates with side-
effects such as updating the database.

Prolog programs may be defined as Prolog modules, each with a unique module name. Prolog modules
act as namespace for the predicates defined by the program and facilitate separation of programs
running within the same Prolog engine.

JPL11 is a software library that provides a bidirectional interface between Java and Prolog. JPL facilitates

to run a Prolog engine embedded within the Java virtual machine. With the use of JPL, Java programs

can control the Prolog engine by loading Prolog programs, asserting facts, posing queries, and invoking

built-in predicates with side-effects. JPL enables hybrid Prolog+Java applications to be designed and

implemented so as to take best advantage of both language systems.

A fact we refer to a variable-free statement in Prolog consisting of a predicate name and a list of
arguments conforming to the schema of the predicate. We distinguish: a static fact is hard-coded in a
Prolog program and compiled and loaded into the Prolog engine, a dynamically asserted fact is added
to the Prolog database at run-time, a virtual fact is derived by Prolog rules and is not asserted in the
DB.

A predicate is a relation maintained and made available by the Prolog engine. The schema of a
predicate is specified by its name (also referred to as predicate symbol) and its arity, i.e., the number
of its arguments, and possibly as comments further information about the type of arguments. The
extension of a predicate is given by a set of facts. We distinguish: a static predicate only has static facts,
a dynamic predicate may also have dynamically asserted facts, a derived predicate additionally has
virtual facts. By method, we refer to a predicate that is defined by a rule with side-effects.

By database we refer to the set of predicates including their schemas and extensions maintained in-
memory and made available for querying in the Prolog engine. We may distinguish: the extensional
database comprising static facts and dynamically asserted facts and the intensional database
comprising virtual facts.

The in-memory RDF database (RDF DB) [2]of SWI-Prolog [1] maintains within a Prolog engine an RDF
dataset and makes it available for querying via dynamic predicate rdf/4 to the programs run by the
Prolog engine. RDF quadruples can be added dynamically to the RDF database via method
rdf_assert/4 or by loading RDF files (typically one file per named graph) via method

rdf_load/2. The contents of the RDF database can be saved as RDF files (typically one file per
named graph) to the file system via method rdf_save/2.

The SPARQL client library of SWI-Prolog facilitates to execute SPARQL queries on a HTTP SPARQL
endpoint, as provided by the AISA KG server, from Prolog.

11 https://jpl7.org/

KG-PROLOG MAPPER

14

2.2 Schema-oblivious approach

Following the schema-oblivious approach for accessing the KG from Prolog, every RDF quadruple is
represented as a Prolog fact. Figure 1 shows the conceptual architecture of a lightweight
implementation of the schema-oblivious based on SWI-Prolog's RDF database. The system takes care
of (partial) data replication between KG and in-memory RDF DB and the Prolog program reads from
the RDF DB and writes to the RDF DB.

Figure 1 Conceptual architecture of the schema-oblivious approach

Figure 2 shows an example of schema-oblivious mapping. The top left of the figure shows the KG
schema, which is defined in RDFS + SHACL. Below the schema is the KG data in RDF. KG schema and
KG data can be read the following way: :D-AIP is an :Aircraft and is linked to 2 :Flight
instances :DLH28W and :DLH99W. A :Flight has 2 properties, :origin and :destination. A

:Flight has the property :wingspan, which consists of a :value and a :unit or a :NilReason.
On the right, next to the KG schema and the KG data, the respective Prolog facts are shown. The library
function rdf/4 of SWI-Prolog consists of a Subject, Predicate, Object and a Graph. That means that each
link is represented in one fact and can be interpreted the following way: :D-AIP is of rdf:type
:Aircraft in Graph :g1. :DAIP has a :wingspan _:b1 in Graph :g1. _:b1 has :value

’35.8’ in Graph :g1 and a :unit ‘m’ in Graph :g1.

The schema-oblivious approach based on Prolog's RDF database is well suited for writing results from
Prolog programs to the KG and also provides a highly-flexible approach for querying the KG from
Prolog. The schema-oblivious approach is, however, unwieldy for Prolog programmers when it comes
to reading KG data that has a complex structure, because knowledge about one object is distributed
over many facts.

KG-PROLOG MAPPER

15

Figure 2 Schema-oblivious mapping example

2.3 Schema-aware approach

In order to overcome the shortcomings of the schema-oblivious approach when it comes to reading
structured data from the KG we develop the schema-aware approach to KG-Prolog mapping. When
accessing the KG from Prolog via a schema-aware approach, facts about one object in one named graph
are combined in a single fact according to the KG schema.

This KG schema directly represents the conceptual schema. The implementation of a schema-aware
approach additionally has components for ma,pping generation at design/compile time and mapping
execution. This approach is more convenient for Prolog programmers as knowledge about one object
is already collected in schema-conforming facts.

The basic idea of the schema-aware mapping is that each RDF node is mapped with its properties
exactly into one Prolog fact. This naturally preserves in Prolog the KG schema. Every RDFS class and
corresponding SHACL node shape becomes a Prolog predicate. Every single-valued property becomes
a single-valued argument of the Prolog predicate, potentially a null value. Every multi-valued property
becomes a list-valued argument of the Prolog predicate, potentially empty.

The AISA KG is highly structured with structural schemata in the form of SHACL shape graphs for all
parts of the KG. In comparison to the schema-oblivious approach, the schema-aware approach

KG-PROLOG MAPPER

16

preserves this structure and, thus, facilitates the development and maintenance of Prolog
programmes. The design goal of this approach is to improve the access to the AISA KG from Prolog.

Figure 3 shows an example for schema-aware mapping. The KG schema and the KG data is the same
as in Figure 2, which shows the resulting Prolog facts following a schema-oblivious approach. On the
right of this figure, the Prolog schema, which is represented as comment, is shown. Below the Prolog
schema, there are the Prolog facts, which are built up according to the Prolog schema. The Prolog
schema and facts can be interpreted the following way: :Aircraft from Graph :g1 with the id
:D-AIDP has an optional :wingspan val(’35.8’,’m’), an optional :model :A321-231 and a list
of :Flight [:DLH28W, :DLH99W]. The :Flight from Graph :g1 with the id :D-AIDP

has the :origin :LEPA and the :destination :EDDM. The :Flight from Graph :g1 with

the id :DLH99W has the :origin :EDDM and the :destination :LEPA.

In comparison to the schema-oblivious mapping, only 3 facts instead of 13 facts are required in order
to represent the example shown in the figure. This approach is more readable and intuitive to use for
Prolog programmers, because facts about one object in one named graph are combined into a single
fact according to the KG schema, which directly represents the conceptual schema.

Figure 3 Schema-aware mapping example

2.4 Summary and Refinement of Design Problems

The RDF database of SWI-Prolog facilitates a schema-oblivious approach to KG-Prolog mapping which
is well-suited for simple KG access and for writing facts to the KG from Prolog. For reading complex
and structured data from the KG we investigate the schema-aware approach to KG-Prolog mapping.

KG-PROLOG MAPPER

17

In contrast to our initial plan in the project proposal, we now see the role of the schema-aware
mapping primarily for reading the schema-aware parts of the KG, rather than as the sole means of
accessing the KG. Especially for writing to the KG from Prolog, the schema-oblivious approach via RDF
DB seems simpler and more flexible. We therefore focus our work on the schema-aware approach on
read access of the KG.

As a result of our analysis of the possibilities of SWI-Prolog, we now see several realization variants for
schema-aware read access of the KG which we will discuss in the nexth chapter. The access via SWI-
Prolog's SPARQL client library sketched in the proposal is only one of several possibilities.

The overall design problem is to improve accessing a Knowledge Graph from Prolog by designing a KG-
Prolog mapper that takes care of data interchange and mapping between Prolog engine and KG, so
that Prolog programmers can easily develop Prolog programs, which read from and write to the AISA
Knowledge Graph.

The first specific design problem is to facilitate reading complex schema-conformant data in a KG from
Prolog by designing a schema-aware KG-Prolog mapper that provides the contents of the KG in a form
amenable to Prolog programmers and according to the KG schema.

The second specific design problem is how to integrate the schema-oblivious approach and the
schema-aware approach with the AISA KG system and how to integrate Prolog programs into the KG
manager with its KG modules and central control component, so that advanced reasoning tasks in AISA
that will be invoked recurrently can easily be realized as Prolog programs, which read from and write
to the AISA Knowledge Graph.

KG-PROLOG MAPPER

18

3 Realization of schema-aware approach

In this chapter we discuss the realization of the schema-aware approach. Section 3.1 gives an overview
of the realization of the schema-aware KG-Prolog mapper and of three realization variants. Section 3.2
discusses the generation of Prolog schema from RDFS/SHACL which is independent of the realization
variant. Section 3.3 discusses schema-aware mapping with SPARQL queries executed in Java
(Realization variant A). Section 3.4 goes into detail about schema-aware mapping SPARQL queries
executed in Prolog (Realization variant B). Section 3.5 discusses realization variant C which is based on
schema-aware mapping rules in Prolog on top of the RDF DB.

Results of preliminary performance studies for these three variants will be discussed in Chapter 4 and
details about the mapping of data types and missing values common to all mapping variants will be
discussed in Chapter 5.

3.1 Overview

Figure 4 gives an overview of the realization of the schema-aware approach. The mapping generator
takes as input the KG schema represented in RDF Schema and SHACL and produces, first, a Prolog
schema, and, second, depending on the realization variant, schema-specific mapping rules/queries.
Depending on the realization variant, see below, the schema-specific mapping rules or queries will be
executed, depending on the realization variant, in Java or Prolog to produce the mapped input Prolog
facts from the KG data represented in RDF. It is assumed that the KG data conforms to the KG schema.
This can be ensured by validating the KG data against the KG schema using a SHACL validator (see
Deliverable D4.1) in order to detect incorrect data prior to mapping. Depending on the realization
variant, the input Prolog facts will be asserted in the Prolog database or made available only as virtual
facts by Prolog rules. The Prolog schema, which is independent of the realization variant, comprises a
description of the structure of mapped input facts as well as inheritance rules which represent subclass
hierarchies from the KG schema. This schema will be inspected by the Prolog programmer when
writing a Prolog program which accesses the input Prolog facts.

Figure 4 Conceptual architecture of the schema-aware approach

KG-PROLOG MAPPER

19

We have investigated and developed three different realization variants. Figure 5 gives an overview of
these variants. Variant A takes the KG data as input and generates schema-specific SPARQL queries in
Java. Each SPARQL query corresponds to one Prolog predicate and each row in its result set is
transformed in Java into one Prolog fact and written into a Prolog file which can be loaded into Prolog.
Variant B takes the KG schema as input and generates schema-specific SPARQL queries embedded into
Prolog rules. These Prolog rules with embedded SPARQL queries can then be loaded into Prolog and
queried for the input Prolog facts. Variant B comes in two subvariants, in the original subvariant B the
input facts remain virtual and SPARQL queries are executed as part of the Prolog program. In
subvariant B2 the SPARQL queries are executed separately and assert the resulting input facts in the
Prolog database. Variant C replicates the RDF quadruples from the KG in Prolog’s RDF DB and
generates schema-specific mapping rules in Prolog. The mapping rules can then be loaded into Prolog
and used for querying input Prolog facts.

Figure 5 Realization variants for schema-specific mapping rules or queries in Prolog or Java

3.2 Generating the Prolog schema from RDFS/SHACL

The Prolog schema produced by the mapping generator consists of a description of the structure of
mapped input facts together with rules that realize the subclass hierarchies from the KG schema. The
Prolog schema is independent of the the three realization variants.

The SHACL Shapes Constraint Language is a language for specifying integrity constraints over RDF
graphs and can be used, among others, to constrain the number of values that a property may have,
the type of such values, numeric ranges, string matching patterns, and logical combinations of such
constraints. Also inheritance can be specified using SHACL. Following a schema-aware approach for

KG-PROLOG MAPPER

20

mapping RDFS/SHACL to Prolog, the SHACL schema predetermines how the final facts look like. For
each target shape in SHACL, there is one predicate. According to the Jena API, which is used for this
project, a target shape is a SHACL shape, which is defined as an rdfs:Class. For each target shape,

a schema comment is generated:

% aixm_OrganisationAuthorityAssociation(Graph,

OrganisationAuthorityAssociation, Type?, Annotation*,

TheOrganisationAuthority)

The given example is the predicate schema for aixm:OrganisationAuthorityAssociation

with the properties aixm:type, aixm:annotation and

aixm:theOrganisationAuthority. The question mark next to Type means that the value is

optional, which is defined in the SHACL schema by a missing sh:minCount (or sh:minCount

= 0) and a sh:maxCount = 1. The wildcard next to Annotation marks that this property is a list of

zero or multiple concatenated values, which is defined in the SHACL schema by a missing

sh:minCount (or sh:minCount = 0) and a missing sh:maxCount (or sh:maxCount >

1). Regarding TheOrganisationAuthority, there is no question mark or wildcard after the argument

name in the predicate schema. This means that there is only one value and this value is mandatory.

Each shape property of a target shape in SHACL is depicted as an argument of the fact.

For each inheritance defined in the SHACL schema, an inheritance rule will be printed to the fact file.
An inheritance rule consists of the super class and the respective subclass:

aixm_AirportHeliportResponsibilityOrganisation_Combined(Graph,

AirportHeliportResponsibilityOrganisation, AnnotationList,

SpecialDateAuthorityList, TimeIntervalList, Role, TheOrganisationAuthority)

:-

 aixm_AirportHeliportResponsibilityOrganisation(Graph,

AirportHeliportResponsibilityOrganisation, Role, TheOrganisationAuthority),

 aixm_PropertiesWithSchedule(Graph,

AirportHeliportResponsibilityOrganisation, AnnotationList,

SpecialDateAuthorityList, TimeIntervalList) .

In this example, the inheritance rule aixm_AirportHeliportResponsibilityOrganisation_Combined is
defined. This inheritance rule consists of aixm_PropertiesWithSchedule and its sub class
aixm_AirportHeliportResponsibilityOrganisation.

3.3 Mapping Variant A - SPARQL queries in Java

With this variant, we implemented a Java program, which generates with the help of SPARQL a set of
Prolog predicates from the RDFS/SHACL schema and a SPARQL query for each predicate. The result of
executing the SPARQL query gives the facts for the respective predicate. These facts are written to a
file and that file is loaded into Prolog.

The Mapping Generator produces a target Prolog schema (i.e., a set of target predicates) and schema-
specific SPARQL Select Queries (one query per target predicate).

KG-PROLOG MAPPER

21

The Schema-aware Runtime System executes for each target predicate the associated query to
produce a set of Prolog facts (one fact for each query solution) to populate the target predicate. The
system may assert the generated facts directly via JPL or write them to a Prolog fact file and invoke the
loading of this fact file together with invoking the Prolog program.

Mapping variant A is available12 open source for experimentation. Before execution of the mapping,
Jena Fuseki (version 3.16.0) server should be started. The starting point and main method of the
mapping can be found in the Shacl2PrologLauncher.java file. When executing the
Shacl2PrologLauncher, the first thing that happens is a connection establishment to the Jena Fuseki
server and the upload of the input files. After the upload of the input files, the schema is fetched from
Jena Fuseki and the SHACL shapes are parsed. The parsed SHACL shapes serve as input for the
instantiation of Mapper.java. At initialization time, the mapper creates an instantiation of
KnowledgeGraphClass.java for each target shape and a linked instantiation of
KnowledgeGraphProperty.java for each of its properties. At creation time of those classes
and its properties, the dedicated SPARQL query, the facts schema and further information, which is
used multiple times during mapping, is saved to variables in order to avoid processing the same data
over and over again. After the instantiation, the mapper iterates over the list of knowledge graph
classes and generates the respective queries, which are saved to /output/queries.sparql by
a PrintWriter. After the generation of the query file, the mapper executes the queries separately and
processes the result sets to have the proper data types for Prolog. At this point, the facts are generated
and saved to the /output/facts.pl file. Next to the facts, static content like prefix registration,
rdf meta and the use of modules in Prolog are also printed to the facts file. Furthermore, inheritance
rules for sh:subClassOf relations between NodeShapes, as explained in the previous section, are

generated and printed to the facts file. After the creation of the facts file, a short prolog program
/output/program.pl is consulted and run. This program loads the facts file into Prolog and
demonstrates in a short example how output can be saved in /output/output.ttl, which will be
load to Fuseki at next. Finally, the performance results (see Section 4.2) are saved to
/output/performance_results.csv.

3.4 Mapping Variant B – SPARQL queries in Prolog

Mapping variant B also consists of a Java program, which generates a Prolog module from the
RDFS/SHACL schema with the predicates that are linked to the respective SPARQL queries by means of
Prolog rules. The SPARQL queries for filling the predicates are only executed from Prolog at runtime.
The Mapping Generator produces a target Prolog schema (i.e., a set of target predicates), schema-
specific SPARQL Select Queries (one query per target predicate) and Prolog rules (one per target
predicate) in which the queries are embedded. The Schema-aware Runtime System invokes the Prolog
program which in turn calls the Prolog rules with the embedded SPARQL queries.

12 https://github.com/jku-win-dke/AISA-KG-Prolog-Mapper/tree/main/at.jku.dke.aisa.mapperA

https://github.com/jku-win-dke/AISA-KG-Prolog-Mapper/tree/main/at.jku.dke.aisa.mapperA

KG-PROLOG MAPPER

22

We have developed and investigated two subvariants of variant B. In the original variant, SPARQL
queries are embedded in Prolog rules that are used to derive input Prolog facts which remain virtual
(i.e., the input facts are not asserted in the Prolog database). In subvariant B2, each SPARQL query is
executed only once and the resulting input facts are asserted in the Prolog database.

Realization variant B13 and its subvariant B214 are available open source for experimentation. Before
execution of the mapping, Jena Fuseki server should be started. The starting point and main method
of the mapping can be found in the Shacl2PrologLauncher.java file. When executing the
Shacl2PrologLauncher, the first thing that happens is a connection establishment to the Jena Fuseki
server and the upload of the input files. After the upload of the input files, the schema is fetched from
Jena Fuseki and the SHACL shapes are parsed. The parsed SHACL shapes serve as input for the
instantiation of Mapper.java. At initialization time, the mapper creates an instantiation of
KnowledgeGraphClass.java for each target shape and a linked instantiation of
KnowledgeGraphProperty.java for each of its properties. At creation time of those classes
and its properties, the dedicated SPARQL query, the facts schema and further information, which is
used multiple times during mapping, is saved to variables in order to avoid processing the same data
over and over again. At next, the /output/facts.pl file is generated and the content printed. The
content of the facts file consists of static content like the use of Prolog libraries and modules and
convert methods to handle data types and lists correctly. Furthermore, the inheritance rules and the
prolog modules with embedded SPARQL queries are generated and printed to the facts file. After the
creation of the facts file, a short prolog program /output/program.pl is consulted and run. This
program loads the facts file into Prolog and demonstrates in a short example how output can be saved
in /output/output.ttl, which will be load to Fuseki at next. Finally, the performance results (see

Section 4.3) are saved to /output/performance_results.csv.

3.5 Mapping Variant C – Mapping Rules in Prolog

Mapping variant C also consists of a Java program. The relevant part of the Knowledge Graphs is
replicated in the main-memory RDF database of SWI-Prolog. The actual mapping is then
formulated as Prolog rules with the RDF quadruples in the RDF database as input. The Mapping
Generator procures a target Prolog schema (i.e., a set of target predicates) and Mapping Rules in
Prolog to map from rdf/4 to target predicates. The Schema-aware Runtime System takes care of
replicating data from the KG into Prolog’s RDF DB (this is already implemented by the schema-
oblivious Runtime System) and invokes the Prolog program which in turn calls the Mapping Rules.

Mapping variant C15 is available open source for experimentation. Before execution of the mapping,
Jena Fuseki server should be started. The starting point and main method of the mapping can be found

13 https://github.com/jku-win-dke/AISA-KG-Prolog-Mapper/tree/main/at.jku.dke.aisa.mapperB

14 https://github.com/jku-win-dke/AISA-KG-Prolog-Mapper/tree/main/at.jku.dke.aisa.mapperB2

15 https://github.com/jku-win-dke/AISA-KG-Prolog-Mapper/tree/main/at.jku.dke.aisa.mapperC

KG-PROLOG MAPPER

23

in the Shacl2PrologLauncher.java file. When executing the Shacl2PrologLauncher, the first
thing that happens is a connection establishment to the Jena Fuseki server and the upload of the input
files. After the upload of the input files, the schema and the data are fetched from Jena Fuseki and the
SHACL shapes are parsed. The data is written to /output/dataset.trig. The parsed SHACL
shapes serve as input for the instantiation of Mapper.java. At initialization time, the mapper
creates an instantiation of KnowledgeGraphClass.java for each target shape and a linked
instantiation of KnowledgeGraphProperty.java for each of its properties. At next, the
/output/facts.pl file is generated. Static content like the use of Prolog libraries and modules,

prefix registrations, load data set and sh:subClassOf relations are printed to the facts file. Next to
the static context, inheritance rules and the facts rules are generated and printed. After the creation
of the facts file, a short prolog program /output/program.pl is consulted and run. This program

loads the facts file into Prolog and demonstrates in a short example how output can be saved in
/output/output.ttl, which will be load to Fuseki at next. Finally, the performance results (see

Section 4.4) are saved to /output/performance_results.csv.

KG-PROLOG MAPPER

24

4 Performance Studies

To get first insights into the performance characteristics of the different realization variants, we
conducted initial performance measurements. These initial performance studies measure how the
execution time for the different mapping variants scales with increasing size of KG data while the size
of the KG schema remains constant.

The measured execution times include the loading of schema and data into the KG, the mapping
generation from the schema, the execution of the generated mappings rules/queries on the KG data,
and the execution of a Prolog program that accesses the mapped input facts and produces a named
graph as result that is written back to the KG.

The KG schema is loaded from two files containing vocabulary and structural constraints represented
in RDF Schema and SHACL. The first schema file is based on a fragment of AIXM and specifies 203
SHACL node shapes of which 37 are also RDFS classes. The second schema file is based on a fragment
of FIXM and specifies 267 SHACL node shapes of which 109 are also specified as RDFS classes. Based
on this KG schema, the mapping generator produces the schema of 146 Prolog predicates, each with
a mapping rule or query (depending on the mapping variant) to generate according input facts from
the KG data.

The KG data is loaded from two RDF files. The first RDF file contains 231 RDF statements conforming
with the AIXM schema fragment and the second RDF file contains 254 RDF statements conforming with
the FIXM schema fragement. This corresponds to the amount of new data we expect the AISA KG
system has to deal with per round.

Parameter number of data copies specifies how many times each of these two files are to be loaded
into the KG, with each copy being stored in a new named graph within the KG. For our preliminary
performance studies we scale the size of the KG data from 1 data copy (amounting to 485 RDF
quadruples in two named graphs) to 1000 data copies (amounting to 485000 RDF quadruples in 2000
named graphs). We run the program for each realization variant with increasing number of data copies:
with 1, 10, 100, 400, 700 and 1000 data copies.

The remainder of this chapter is structured as follows. Section 4.1 provides details on the setup of the
performance studies. Sections 4.2, 4.3, and 4.4 discuss the measurements obtained for each of the
realization variants described in the previos chapter. Section 4.5 summarizes the preliminary
performance studies by comparing the total execution times of the different variants.

4.1 Setup of Performance Studies

The following performance measurements were generated by running start_performance_test.bat for

each variant on a computer with an Intel© Core™ i3-2130 CPU @3.40 GHz 3.40 GHz, 2 kernels, 4 logical
processors running with 8 GB of physical RAM, running Windows 10 Pro.

In order to test the performance of each mapping variant, we created a constant
NUMBER_OF_DATA_COPIES, which is by default 1. This constant indicates how many data copies of

KG-PROLOG MAPPER

25

the data are used for one execution of the mapper. In detail, there is an iteration around the code,
which uploads the data of the input folder to Jena Fuseki server. If the number is above 1, the data is
uploaded multiple times. Additionally, the number of data copies can be overwritten by adding the
number as an argument when starting the SHACL2PrologLauncher. The use of this constant makes it
easier to test the performance and scalability of the mapper with only a limited amount of defined
data.

Our input consists of 2 shacl schema and 2 data files. The aixm schema, which can be found in
/input/schema/donlon-shacl.ttl, consists of 203 sh:NodeShapes. 37 of these
sh:NodeShapes are rdfs:Classes and therefore target shapes relevant for mapping. The fixm
schema, which can be found in /input/schema/FIXM_EDDF-VHHH.ttl, consists of 267

sh:NodeShapes. 109 of these sh:NodeShapes are rdfs:Classes, therefore target shapes
and also relevant for mapping. The aixm data, which can be found in /input/data/donlon-
data.ttl, consists of 33 resources. The fixm data, which can be found in

/input/data/FIXM_EDDF_VHHH.ttl, consists of 40 resources.

For the purpose of testing the mapper automatically with different number of data copies, we created
performance test scripts and exported .JAR files for each mapping variant.

We created the JAR file using eclipse: File -> Export… -> Runnable JAR file. As launch configuration, the
Shacl2PrologLauncher of the desired mapping variant has to be chosen. The export destination should
be the bundle of the selected mapper. For our test JARs, we selected as library handling to package
required libraries into generated JAR.

The start_performance_test.bat file, which can be found in each mapping variant bundle,
first starts the Jena Fuseki server, executes the mapper with a specific number of data copies and stops
the Jena Fuseki server. In order to get proper results, Jena Fuseki server needs to be restarted before
every execution run of a mapping variant.

One run of the mapper is called by the performance test script the following way:

java -jar MapperA.jar 100

As already mentioned, the default number of data copies is 1. As mentioned above, one data copy
contains 485 RDF statements in two named graphs. In this example, the number of data copies is
overwritten by the launch argument 100. That means that the data in the input folder is uploaded to
Jena Fuseki 100 times and consequently, we use a hundred times more data than by using the default
number of data copies, namely 48500 RDF quadruples in 200 named graphs.

Besides the total execution time, which is interesting for comparing the mapping variants and the
overall scalability, we divided the mapper in logical section and measured the execution time of each
part. Some of these parts are dependent on the mapping variant or the number of data copies, others
are equally in terms of execution time for every variant. Mapping, Mapping variant and data copy
independent parts are “Jena Fuseki connection establishment” and “Loading shacl schema files”.
“Loading data files” is only dependent on the data copies, but independent of the mapping and the
specific mapping variant. The steps “Fetching shacl schema” and “Creating KnowledgeGraphClasses
and KnowledgeGraphProperties” are mapping-specific, but independent from the number of data
copies.

KG-PROLOG MAPPER

26

The performance of each variant dependent part will be described more in detail in the following
subsections.

4.2 Performance Results of Mapping Variant A

In order to conduct preliminary performance studies, we ran mapping variant A with 1, 10, 100, 400,
700, 1000 data copies. Overall, the performance of mapping variant A is decent and scales good with
higher numbers of data copies. To get better insight, what exactly takes the most time, we measured
the time of 11 separate parts of the program. Figure 6 shows the results of running the mapper with
different number of data copies for each step in milliseconds:

• Jena Fuseki connection establishment: This step is data copy, mapping and variant
independent. This means that the execution time of this step is on average equally for all
mapping variants.

• Loading shacl schema files: This step is data copy, mapping and variant independent. This
means that the execution time of this step is on average equally for all mapping variants.

• Loading data files: This step is only dependent on the number of data copies, but independent
from the mapping and mapping variant.

• Fetching SHACL schema: This step is mapping-specific, but independent from the number of
data copies.

• Creating KnowledgeGraphclasses and KnowledgeGraphProperties: This step is mapping-
specific, but independent from the number of data copies.

• Creating SPARQL file: This step is dependent on the mapping variant. However, it does not take
much time as the SPARQL queries are already generated at instantiation time of the mapper.

• Executing SPARQL queries and creating Prolog facts: This step is dependent on the mapping
variant and on the number of data copies. For each target shape defined in /input/schema/,
there is a SPARQL query, which will be executed in this step. Each row in the result set
describes one resource of the input data from /input/data/ and will be processed into one fact.
This means that the execution time of this step depends on the number of data copies (from
1 to 1000 data copies with 485 to 485000 RDF statements in 2 to 2000 named graphs) and
consequently the number of mapped input facts which will be generated (from 106 to 106000
Prolog facts).

• Consult Program: This step is dependent on the mapping variant. Consulting
/output/program.pl reads program.pl as a Prolog resource and loads the previously generated
facts.pl file into Prolog. The execution time of this step scales with the number of data copies,
which increases the number of facts in the facts.pl file. The size of the generated Prolog
program (facts.pl) which contains not only the generated facts but also the predicate schema
and the inheritance rules ranges from 87 KB to 25.8 MB .

• Invoke run/0 in Prolog: This step is dependent on the mapping variant.

KG-PROLOG MAPPER

27

• Invoke save/0 in Prolog: This step is independent from the mapping variant. This Prolog
method saves the content of the given graph to /output/output.ttl.

• Load saved results to Fuseki: This step is independent from the mapping variant. This Prolog
method loads the content of /output/output.ttl with the given graph to Fuseki.

Figure 6 Performance results of mapping variant A. KG data size scaled from 1 data copy (485 RDF
quadruples) to 1000 data copies (485000 RDF quadruples).

4.3 Performance Results of Mapping Variant B

In order to conduct preliminary performance studies, we ran mapping variant B with 1, 10, 100, 400,
700, 1000 data copies. Overall, the performance of mapping variant B scales very bad with the number
of data copies. To get better insight, what exactly takes the most time, we measured the time of 10
separate parts of the program. Figure 7 shows the results of running the mapper with different number
of data copies for each step in milliseconds:

• Jena Fuseki connection establishment: (same as in variant A).

• Loading shacl schema files: (same as in variant A).

• Loading data files: (same as in variant A).

• Fetching SHACL schema: (same as in variant A).

KG-PROLOG MAPPER

28

• Creating KnowledgeGraphclasses and KnowledgeGraphProperties: This step is mapping-
specific, but independent from the number of data copies.

• Creating Prolog file with embedded SPARQL queries: This step is mapping-specific for variant
B, but does not take much time in total, because information, which was already processed in
the previous step, is combined and written out to /output/facts.pl.

• Consult Program: This step is dependent on the mapping variant. Consulting
/output/program.pl reads the file as a Prolog resource and loads the content of the previously
generated facts.pl file. In comparison to mapping variant A, the facts.pl file does not contain
facts, which scale on the number of data copies, but prolog modules, which can be called to
receive facts. This step scales on the size of the SHACL schemas, but it does not have a major
impact as usually the schema does not consist of infinitely many SHACL shapes.

• Invoke run/0 in Prolog: This step is dependent on the mapping variant and takes the most time
of variant B. For each iteration (each fact) of the Prolog method run, the respective Prolog
rules with the embedded SPARQL queries for the facts have to be called. This means that
queries are posed multiple times, which increases the execution time heavily.

• Invoke save/0 in Prolog: (same as in variant A).

• Load saved results to Fuseki: (same as in variant A).

Figure 7 Performance results of mapping variant B

In order to improve mapping variant B, we went for an approach to bypass the case that requests and
queries are posed multiple times for the same facts. For this purpose, we created a map/0 method,
which contains all sparql queries and asserts the facts into the database after querying. In comparison

KG-PROLOG MAPPER

29

to the normal mapping variant B, the performance improves considerably and is now on average
equally fast than mapping variant A and C. Figure 8 shows the performance of the improved mapping
variant B2. The most interesting part of this figure is “Invoke map/0 in Prolog”, which now takes around
31664 ms instead of 6227077 for 1000 data copies.

Figure 8 Performance results of mapping variant B2

4.4 Performance Results of Mapping Variant C

In order to conduct preliminary performance studies, we ran mapping variant C with 1, 10, 100, 400,
700, 1000 data copies. Overall, the performance of mapping variant C is decent and scales good with
higher numbers of data copies. To get better insight, what exactly takes the most time, we measured
the time of 11 separate parts of the program. Figure 9 shows the results of running the mapper with
different number of data copies for each step in milliseconds:

• Jena Fuseki connection establishment: (same as in variant A).

• Loading shacl schema files: (same as in variant A).

• Loading data files: (same as in variant A).

• Fetching SHACL schema: (same as in variant A).

• Fetching and writing data set: This step is mapping-specific for variant C and dependent from
the number of data copies. The data is fetched from fuseki and written to /output/dataset.trig.

KG-PROLOG MAPPER

30

• Creating KnowledgeGraphclasses and KnowledgeGraphProperties: This step is mapping-
specific, but independent from the number of data copies.

• Creating mapping rules: This step is dependent on the mapping variant. An import for
dataset.trig and mapping rules are generated as Prolog rules and written to /output/facts.pl.

• Consult Program: This step is dependent on the mapping variant. Consulting
/output/program.pl reads program.pl as Prolog resource and loads the data set file into Prolog
by calling facts.pl. Therefore, this step scales with the number of data copies.

• Invoke run/0 in Prolog: This step is dependent on the mapping variant.

• Invoke save/0 in Prolog: (same as in varaint A).

• Load saved results to Fuseki: (same as in variant A).

Figure 9 Performance results of mapping variant C

In variant C, the mapped input facts are not asserted in the Prolog DB but are made available by the
mapping rules as virtual facts. For more complex programs, it will be advantageous to assert the
mapped input facts in the Prolog database, as we have done with the improved variant B2.

KG-PROLOG MAPPER

31

4.5 Summary

We conducted preliminary performance studies regarding three variants and one subvariant of the
schema-aware KG-Prolog mapper. Figure 10 shows the total execution time of these variants with
regard to increasing number of data copies. Realization variants A, C and subvariant B2 have similar
performance characteristics, only the original variant B has a significantly poorer performance. Since
the different variants do not show significant differences in terms of performance, we can rely on other
criteria when deciding which of the variants to integrate into the KG system.

Figure 10 Total execution time of different mapping variants

1 10 100 400 700 1000

A 11205 11564 17580 33838 51567 63905

B 7954 10736 80352 1003397 3007397 6195232

C 9523 10220 16017 33678 53416 72969

B2 10465 11343 17171 34633 53442 65787

0

10000

20000

30000

40000

50000

60000

70000

80000

m
s

number of data copies

Total Execution Time of all Variants

KG-PROLOG MAPPER

32

5 Handling of Data Types and Missing Values

One important part of the implementation is the correct handling of data types, lists and missing
values. Our goal was to process the data types into a Prolog readable format and to get exactly the
same results from each mapping variant. Generally, The mappers only consider a limited number of
data types relevant for the project: xsd:string, xsd:integer, xsd:decimal,
xsd:unsignedInt and xsd:dateTime.

In this chapter we first discuss, in Section 5.1, how reading and processing values and data types is
solved differently for each realization. The remaining sections will show examples of mapping
nilReason (Section 5.2), values without unit of measurement (Section 5.3), values with unit of
measurement (Section 5.4), indeterminate positions and dateTimes (Section 5.5), missing values
(Section 5.6), and, finally, the mapping of multi-valued properties to Prolog lists (Section 5.7). These
examples apply for all realization variants since only the way the data is queried and processed is
different, but the final results are equal.

5.1 Value handling in the different mapping realization variants

Mapping variant A puts the value and the data type together within the SPARQL query. The content
of the result set will be processed in the right format for Prolog in the next step in Java.

Figure 11 shows an example SPARQL query for aixm:OrganizationAuthorityAssociation.

Figure 11 SPARQL query of mapping variant A

KG-PROLOG MAPPER

33

Given the data:

 s1:A-a72cfd3a

 a aixm:AirportHeliportResponsibilityOrganisation;

 aixm:role [rdf:value "OPERATE"];

 aixm:theOrganisationAuthority <uuid:74efb6ba-a52a-46c0-a16b-

03860d356882>;

 aixm:annotation s1:n002.

the binding for variable ?role in the result set of the SPARQL query will be:

val:OPERATE:http://www.w3.org/2001/XMLSchema#string

Mapping variant A processes this result in Java and the final result is:

val("OPERATE"^^xsd:'string')

Mapping variant B also puts the value and the data type together within the SPARQL query, which can
be seen in Figure 12, just like in variant A. However, the processing of the result set happens in Prolog
and is called within the Prolog module:

Figure 12 Prolog module with embedded SPARQL query of mapping variant B

With convVal(Value,ValueVal) and convert(Value,ValueList) in line 33 and 34 the Prolog data type
mapping methods (see Figure 13) are called, which process the SPARQL query results in the right
format:

KG-PROLOG MAPPER

34

Figure 13 Prolog methods for data type handling of mapping variant B

convert(ConcatenatedString,ListOfAtoms), see Line 1 in Figure 13, is called to

concatenate values to a list and converting the values of the list in the right format.

convert(Null,[]), see Line 6 in Figure 13, is called to handle empty lists.

convVal(String,Value), see Line 11 in Figure 13, is called to handle and map data types
correctly. Detailed examples of how input data looks after mapping are shown in the next subsections
of this chapter.

Mapping variant C does the processing of values, data types and missing values within the generated
mapping rules. Further handling of the value and data type in Java or Prolog is not necessary for this
mapping variant. Figure 14 shows an example for such a mapping rule.

KG-PROLOG MAPPER

35

Figure 14 Mapping rule of mapping variant C

5.2 NilReasons

If the data is of type aixm:NilReason, then the results will be mapped to format nil(value).

Example: aixm:AirportHeliportTimeSlice has a property aixm:designatorIATA,
which is defined as a DataTypeNodeShype aixm:CodeIATAType.

aixm:AirportHeliportTimeSlice

 a sh:NodeShape , aixm:FeatureNodeShape , rdfs:Class ;

 sh:and (aixm:AIXMTimeSlice) ;

…

 sh:property [sh:maxCount 1 ;

 sh:node aixm:CodeIATAType ;

 sh:order 4 ;

 sh:path aixm:designatorIATA

] ;
… .

aixm:CodeIATAType a aixm:DataTypeNodeShape , sh:NodeShape ;

 sh:and (aixm:CodeIATABaseType) ;

 sh:property [sh:maxCount 1 ;

 sh:node aixm:NilReasonEnumeration ;

 sh:order 1 ;

 sh:path aixm:nilReason

] ;

 sh:property [sh:maxCount 1 ;

 sh:order 1 ;

 sh:path rdf:value

KG-PROLOG MAPPER

36

] ;

 sh:xone ([sh:property [sh:minCount 1 ;

 sh:order 1 ;

 sh:path rdf:value

]

]

 [sh:property [sh:minCount 1 ;

 sh:order 1 ;

 sh:path aixm:nilReason

]

]

) .

The DataTypeNodeShape aixm:CodeIATAType shows that aixm:designatorIATA of
aixm:AirportHeliportTimeSlice is either represented as a value rdf:value or as a
nilReason aixm:Nilreason.

Given the following data:

 s1:AHP_EADH

 a aixm:AirportHeliportTimeSlice;

…

 aixm:designatorIATA [aixm:nilReason "unknown"];

….

The mapping result will look the following way:

% aixm_AirportHeliportTimeSlice(Graph, AirportHeliportTimeSlice, …

DesignatorIATA?, …)

aixm_AirportHeliportTimeSlice(graph:'149_donlon-data.ttl', s1:'AHP_EADH', …

nil("unknown"^^xsd:'string'), …).

5.3 Values without Unit of Measurement

If no unit of measurement exists for a value when querying or posing the mapping rule, then the result
will be mapped in the format val(Value).

Example: aixm:AirportHeliportTimeSlice has a property aixm:designator, which is

defined as a DataTypeNodeShape aixm:CodeAirportHeliportDesignatorType.

aixm:AirportHeliportTimeSlice

 a sh:NodeShape , aixm:FeatureNodeShape , rdfs:Class ;

 sh:and (aixm:AIXMTimeSlice) ;

…

 sh:property [sh:maxCount 1 ;

 sh:node aixm:CodeAirportHeliportDesignatorType ;

 sh:order 1 ;

 sh:path aixm:designator

] ;

….
aixm:CodeAirportHeliportDesignatorType

 a aixm:DataTypeNodeShape , sh:NodeShape ;

KG-PROLOG MAPPER

37

 sh:and (aixm:CodeAirportHeliportDesignatorBaseType) ;

 sh:property [sh:maxCount 1 ;

 sh:node aixm:NilReasonEnumeration ;

 sh:order 1 ;

 sh:path aixm:nilReason

] ;

 sh:property [sh:maxCount 1 ;

 sh:order 1 ;

 sh:path rdf:value

] ;

 sh:xone ([sh:property [sh:minCount 1 ;

 sh:order 1 ;

 sh:path rdf:value

]

]

 [sh:property [sh:minCount 1 ;

 sh:order 1 ;

 sh:path aixm:nilReason

]

]

) .

The DataTypeNodeShape aixm:CodeAirportHeliportDesignatorType shows that

aixm:designator of aixm:AirportHeliportTimeSlice can either be represented as a
value rdf:value or as a nilReason aixm:nilReason.

Given the following data for aixm:AirportHeliportTimeSlice:

 s1:AHP_EADH

 a aixm:AirportHeliportTimeSlice;

…

 aixm:designator [rdf:value "EADH"];

….

The mapping result is:

% aixm_AirportHeliportTimeSlice(Graph, AirportHeliportTimeSlice,

Designator?, …)

aixm_AirportHeliportTimeSlice(graph:'149_donlon-data.ttl', s1:'AHP_EADH',

val("EADH"^^xsd:'string'), …).

5.4 Values with Unit of Measurement

If an unit of measurement exists for a value when querying or posing the mapping rule, then the result
will be mapped in the format xval(Value,UoM).

Example: aixm_AirportHeliportTimeSlice has a property aixm:fieldElevation,
which is defined as a DataTypeNodeShape aixm:ValDistanceVerticalType.

aixm:AirportHeliportTimeSlice

 a sh:NodeShape , aixm:FeatureNodeShape , rdfs:Class ;

 sh:and (aixm:AIXMTimeSlice) ;

KG-PROLOG MAPPER

38

…

 sh:property [sh:maxCount 1 ;

 sh:node aixm:ValDistanceVerticalType ;

 sh:order 9 ;

 sh:path aixm:fieldElevation

] ;

…

aixm:ValDistanceVerticalType

 a aixm:DataTypeNodeShape , sh:NodeShape ;

 sh:and (aixm:ValDistanceVerticalBaseType) ;

 sh:property [sh:maxCount 1 ;

 sh:node aixm:NilReasonEnumeration ;

 sh:order 2 ;

 sh:path aixm:nilReason

] ;

 sh:property [sh:maxCount 1 ;

 sh:node aixm:UomDistanceVerticalType ;

 sh:order 1 ;

 sh:path aixm:uom

] ;

 sh:property [sh:maxCount 1 ;

 sh:order 1 ;

 sh:path rdf:value

] ;

 sh:xone ([sh:property [sh:minCount 1 ;

 sh:order 1 ;

 sh:path rdf:value

] ;

 sh:property [sh:order 2 ;

 sh:path aixm:uom

]

]

 [sh:property [sh:minCount 1 ;

 sh:order 1 ;

 sh:path aixm:nilReason

]

]

) .

The DataTypeNodeShape aixm:ValDistanceVerticalType shows that
aixm:fieldElevation of aixm:AirportHeliportTimeSlice can either be represented
as a value rdf:value with an unit of measurement aixm:uom or as an aixm:nilReason.

Given the following data for aixm:AirportHeliportTimeSlice:

 s1:AHP_EADH

 a aixm:AirportHeliportTimeSlice;

…

 aixm:fieldElevation [aixm:uom "M"; rdf:value "18"];

…

 .
The mapping result is:

% aixm_AirportHeliportTimeSlice(Graph, AirportHeliportTimeSlice, …

FieldElevation?, …

KG-PROLOG MAPPER

39

aixm_AirportHeliportTimeSlice(graph:'149_donlon-data.ttl', s1:'AHP_EADH', …

xval("18"^^xsd:'string',"M"^^xsd:'string'), …).

5.5 Indeterminate Position and DateTime

gml:TimePrimitive is defined as a BasicElementNodeShape with the properties
gml:indeterminatePosition (which is an enumeration) and rdf:value (which is in this case
a xsd:dateTime). If data with a gml:indeterminatePosition is mapped, the results will
have the format indeterminate(Value). If data with a xsd:dateTime is mapped, the results will

have the format:

 val(date_time(Year,Month,Day,Hour,Minutes,Seconds,Milliseconds)^^xsd:'dateTime').

Example: gml:TimePeriod has 2 properties gml:beginPosition and gml:endPosition,
which are of type gml:TimePrimitive.

gml:TimePeriod a rdfs:Class , aixm:BasicElementNodeShape , sh:NodeShape

;

 sh:property [sh:maxCount 1 ;

 sh:minCount 1 ;

 sh:node gml:TimePrimitive ;

 sh:order 2 ;

 sh:path gml:endPosition

] ;

 sh:property [sh:maxCount 1 ;

 sh:minCount 1 ;

 sh:node gml:TimePrimitive ;

 sh:order 1 ;

 sh:path gml:beginPosition

] .

Given the following data:

 s1:vtnull0

 a gml:TimePeriod;

 gml:beginPosition [rdf:value "2009-01-01T00:00:00Z"^^xsd:dateTime];

 gml:endPosition [gml:indeterminatePosition "unknown"].

The resulting fact and mapping of the xsd:dateTime and gml:indeterminatePosition will
look the following:

% gml_TimePeriod(Graph, TimePeriod, BeginPosition, EndPosition)

gml_TimePeriod(graph:'444_donlon-data.ttl', s1:'vtnull0',

val(date_time(2009, 1, 1, 0, 0, 0, 0)^^xsd:'dateTime'),

indeterminate("unknown"^^xsd:'string')).

KG-PROLOG MAPPER

40

5.6 Missing Values

SHACL properties with no sh:minCount or a sh:minCount < 1, are optional. This means that it is
not mandatory to define this property in the data. If such a property is missing, we decided to fall back
to the atom ‘$null$’, which is also used for variables that are unbound in SPARQL, when using
sparql_query.

Example: aixm_AirportHeliportTimeSlice has an optional property aixm:name.

aixm:AirportHeliportTimeSlice

 a sh:NodeShape , aixm:FeatureNodeShape , rdfs:Class ;

 sh:and (aixm:AIXMTimeSlice) ;

…

 sh:property [sh:maxCount 1 ;

 sh:node aixm:TextNameType ;

 sh:order 2 ;

 sh:path aixm:name

] ;

…

In donlon-data.ttl, this property is missing:

 s2:ID_ACT_11

 a aixm:AirportHeliportTimeSlice;

 gml:validTime s2:ID_ACT_12;

 aixm:interpretation [rdf:value "TEMPDELTA"];

 aixm:sequenceNumber [rdf:value "1"^^xsd:unsignedInt];

 aixm:correctionNumber [rdf:value "0"^^xsd:unsignedInt];

 aixm:availability s2:ID_ACT_13;

 aixm:extension s2:ID_ACT_211;

 aixm:designatorIATA [rdf:value "ysdf"];

 aixm:servedCity s2:city1, s2:city2.

The missing value is represented by ‘$null$’ and the final fact after mapping looks the following:

% aixm_AirportHeliportTimeSlice(Graph, AirportHeliportTimeSlice, … Name?,

…)

aixm_AirportHeliportTimeSlice(graph:'799_donlon-data.ttl', s2:'ID_ACT_11',

… '$null$', …).

5.7 Lists

SHACL properties with no sh:maxCount = 1 or a sh:maxCount above 1 are concatenated and
handled as lists in our mapping variants.

Example: aixm_AirportHeliportTimeSlice, which is defined in donlon-shacl.ttl has a
property aixm:servedCity. This property has no sh:maxCount, therefore multiple values are
permitted.

KG-PROLOG MAPPER

41

aixm:AirportHeliportTimeSlice

 a sh:NodeShape , aixm:FeatureNodeShape , rdfs:Class ;

 sh:and (aixm:AIXMTimeSlice) ;

…
 sh:property [sh:class aixm:City ;

 sh:order 166 ;

 sh:path aixm:servedCity

] ;

…

In donlon-data.ttl, an aixm:AirportHeliportTimeSlice with 2 cities is defined:

 s2:ID_ACT_11

 a aixm:AirportHeliportTimeSlice;

…

 aixm:servedCity s2:city1, s2:city2.

The final fact after mapping looks the following:

% aixm_AirportHeliportTimeSlice(Graph, AirportHeliportTimeSlice, …

ServedCity*, …)

aixm_AirportHeliportTimeSlice(graph:'799_donlon-data.ttl', s2:'ID_ACT_11',

… [s2:'city1', s2:'city2'], …).

If no data for a list is available, then an empty list is represented by []:

% aixm_AirportHeliportTimeSlice(Graph, AirportHeliportTimeSlice, …

Contaminant*, ServedCity*, …)

aixm_AirportHeliportTimeSlice(graph:'799_donlon-data.ttl', s2:'ID_ACT_11',

… [], [s2:'city1', s2:'city2'], …).

Other previously mentioned data type mapping rules are also considered within lists; e.g.:
[val("D1"^^xsd:'string'), val("L"^^xsd:'string'), val("B1"^^xsd:'string')]

KG-PROLOG MAPPER

42

6 Integration of Prolog with the Proof-of-
Concept KG System

With Deliverable D4.1 (Section 3) we introduced the architecture for the AISA KG system, a compact
Java library supporting this architecture, and a small proof-of-concept KG system exemplifying the
architecture as well as the usage of the Java library.

In this section we describe the integration of Prolog engine and KG-Prolog mapping in the proof-of-
concept KG system. The integrated system realizes the schema-oblivious approach and variant C of the
schema-aware approach. The integrated system builds on SWI-Prolog's internal, in-memory RDF
database and an incremental full replication between the AISA KG (persisted via Jena TDB and accessed
via Jena Fuseki) and SWI-Prolog's RDF DB.

From the three realization variants described in the previous chapter we integrated one variant into
the KG system. The rationale for choosing variant C is the following:

• The Prolog programmer has available the full KG also in the form of RDF quadruples and can
flexibly choose between schema-aware and schema-oblivious approach.

• With variant C it is straightforward to cope with very frequent additions of new data to the KG
and to incrementally make available the new data to Prolog.

Figure 15 shows the overall approach. The mapping generator gets as input the KG schema and
produces as output the schema of Prolog predicates (documenting the schema of input prolog facts
for the Prolog programmer which will inspect this docementation when writing Prolog programs) and
the schema-specific mapping rules in Prolog which take Prolog’s RDF DB as input. The mapped
predicates together with the mapping rules (one rule for each predicate) can be regarded as schema-
aware view over the KG. The prolog programs can access the KG directly via Prolog’s RDF DB in a
schema-oblivious manner, or schema-aware via the mapped predicates and the corresponding rules.
Prolog programs write to the KG directly via Prolog’s RDF DB.

 Figure 15 Conceptual architecture of the integrated KG-Prolog mapper

KG-PROLOG MAPPER

43

When working with the Java library for the AISA KG module system, the library takes care of replicating
every named graph written to the AISA KG also in the RDF DB and, vice versa, data written to the RDF
DB is replicated in the AISA KG.

The KG module system runs as a Java process that connects to the Fuseki KG Server (which runs in a
separate process), and inserts data into the KG via its KG modules. There are mainly two types of KG
modules: A single-run module (also referred to as static module) runs only once at start-up of the KG
system and inserts a static data named graph into the KG. A multiple-run module (also referred to as
dynamic module) runs multiple times, at start-up it adds a static data named graph and with every run
it inserts a new data named graph.

The Prolog engine runs embedded in the KG module system’s Java process. At start-up, the KG module
system loads a Prolog program with generic code (global.pl, see Figure 16 and next paragraph) and
invokes the single-run schema module (implemented by class SchemaLoader) which loads the
RDFS/SHACL schema to the KG and executes the mapping generator, which generates and loads a
Prolog program with the schema specific mapping rules. At start-up, the KG module system also
initializes the multiple-run modules. Initializing a Prolog-based KG module comes with loading a Prolog
program that implements the Prolog parts of the Prolog-based module. That Prolog program is itself a
Prolog module, with the Prolog module having the same name as the KG module from which it is
loaded. Each such Prolog module implements a run/0 method which is invoked each time the Prolog-
based KG module runs.

The generic Prolog code (see Figure 16) loaded into the Prolog engine at start-up implements method
insert_rdf/3 (Line 16), which is used by the Prolog modules to insert RDF statements into the new data
named graph associated with the current run of the multiple-run module. Predicate current_graph/1
holds the IRI of the current new data named graph. At each run of a Prolog based module, Prolog
method set_current_graph/1 (Line 12 in Figure 16) is called from Java (Line 36 in Figure 17) prior to
calling the run/0 method (Line 37 in Figure 17).

Figure 16 Prolog program global.pl

KG-PROLOG MAPPER

44

Figure 17 Fragment from PrologModule.java

In the sample project (at.jku.dke.aisa.kg.sample.prolog) there are two Prolog-based modules called
prolog1 and prolog2. Figure 18 shows a sample Prolog module prolog1, the name of the Prolog module
(set at Line 1) has to be the same as the name of the corresponding KG module. As an example of
accessing the KG using the schema-aware approach it queries mapped predicate gml_TimePeriod/4
(Line 4) which in turn queries the RDF DB. The run/0 method of module prolog1 writes to the current
new data named graph using method insert_rdf/3 (Lines 7 and 8). As an example of accessing the KG
using the schema-oblivious approach, method run/0 also queries Prolog’s RDF DB directly using
predicate rdf/4 (see Line 8).

Figure 18 Sample Prolog module prolog1

KG Data Replication. The approach is based on full incremental replication of the KG contents in SWI-

Prolog’s in-memory database. After a named graph is written to the AISA KG it is fetched from the KG,

written to a temporary RDF/XML file which is then loaded into RDF.

For quickly inspecting the proper functioning of the system, the contents of the KG are also replicated

on the file system in folder fileoutput/_NG_/ as Turtle files with the name of the named graph (i.e. the

last part of the named graph’s IRI) as file name. These files get deleted with the next start of the KG-

System, together with all the other files in folder fileoutput/. All named graphs are collected in a

dedicated folder (fileoutput/_NG_/) and not in module specific output folders (e.g.,

fileoutput/prolog1/). This is to, first, avoid cluttering the module-specific output folders which are

dedicated to custom module-specific file output, and, second, to have the whole content of the KG at

one place. Named graphs are written to the file system once they are finished and committed into the

KG and replicated to Prolog. The current committed state of the KG can thus always be inspected by

inspecting the files in folder fileoutput/_NG_/

Summary. Prolog programs are fully integrated in the KG module system and the KG manager. A

Prolog-based KG module is represented in Java by an instance of class PrologModule and in Prolog by

a Prolog module represented by one Prolog program per module. Prolog modules are loaded into the

Prolog engine during initialization of the KG module system. Each such Prolog module implements a

method run/0, which executes queries over the RDF DB whch is an in-memory replica of the KG (using

the predicates provided by the schema-aware mapping or directly following the schema-oblivious

approach), performs reasoning, and writes results into the current named graph in the RDF DB which

gets replicated to the KG.

KG-PROLOG MAPPER

45

7 Results

Analysis of the capabilities of SWI-Prolog and our considerations for embedding Prolog into the AISA-
KG system have called into question the purely schema-aware and SPARQL-based approach sketched
in the proposal. Based on these analyses and considerations, we opted for a combination between
schema-aware and schema-oblivious approach, in order to get the flexibility of the schema-oblivious
approach for write access and simple read access and to also get the convenience of the schema-aware
approach for reading schema-conformant data.

Regarding the realization of the schema-aware approach, we have designed and implemented
different variants and studied their performance. The three investigated variants are: (A) execute
SPARQL queries and generate Prolog facts in Java and load generated input facts to Prolog; (B) execute
SPARQL queries in Prolog and dynamically assert the generated input facts in Prolog; and (C) replicate
KG to SWI-Prolog's in-memory RDF database with input facts provided as virtual facts by mapping rules
in Prolog. Our preliminary performance studies have not revealed significant differences among the
final versions of these three variants.

The schema of the generated input facts generated from the KG schema, which is specified in RDFS
and SHACL, is the same for all three variants. The only difference is how and in which system (in Java
or Prolog) the mapping is executed at the instance level. The structure of predicates (arity and ordering
of attributes) as well as the SPARQL queries or rules to populate these predicates are generated not
only from validating SHACL properties but also from non-validating properties such as sh:order.

For the integration of Prolog into the KG system, we opted for variant C because it facilitates
incremental update of the generated input facts and because it inherently implements a combination
of schema-aware and schema-oblivious approach. Prolog programs are fully integrated in the KG
module system and can be invoked recurrently by the central control component to perform recurrent
reasoning tasks over the AISA KG.

KG-PROLOG MAPPER

46

References

[1] Wielemaker, Jan, et al. "Swi-prolog." Theory and Practice of Logic Programming 12.1-2 (2012):
67-96.

[2] Wielemaker, Jan, Guus Schreiber, and Bob Wielinga. "Prolog-based infrastructure for RDF:
Scalability and performance." International Semantic Web Conference. Springer, Berlin,
Heidelberg, 2003.

[3] Carroll, Jeremy J., et al. "Jena: implementing the semantic web recommendations."
Proceedings of the 13th international World Wide Web conference (Alternate Track Papers &
Posters). 2004.

KG-PROLOG MAPPER

47

Appendix A Glossary

Abbreviation Term

ADS-B Automatic Dependent Surveillance-Broadcast

AI Artificial Intelligence

AIXM Aeronautical Information Exchange Model

ATC Air Traffic Control

ATCO Air Traffic Control Officer

ATM Air Traffic Management

FIXM Flight Information Exchange Model

ICAO International Civil Aviation Organization

JPL a Java/Prolog Interface

ML Machine Learning

KG Knowledge graph

PoC Proof-of-Concept

RDF Resource Description Framework

RDF/XML a syntax to express an RDF as an XML document

RDFS Resource Description Framework Schema

SA Situational Awareness

SHACL Shapes Constraint Language

SPARQL SPARQL Protocol and RDF Query Language

SWIM System-wide Information Management

Turtle Terse RDF Triple Language

UML Unified Modeling Language

XMI XML Metadata Interchange

XQuery XML Query Language

Table 1 Table of acronyms

KG-PROLOG MAPPER

48

Appendix B Technical Documentation

B.1 Overview of GitHub repository
Java code, Prolog programs and example data and schema (RDF, RDF Schema and SHACL) are available
in GitHub repository https://github.com/jku-win-dke/AISA-KG-Prolog-Mapper/ .

The repository consists of the following projects and dependencies:

• at.jku.dke.aisa.kg.sample.adsb
o depends on: at.jku.dke.aisa.kg

• at.jku.dke.aisa.kg.sample.prolog
o depends on: at.jku.dke.aisa.kg

• at.jku.dke.aisa.kg
o depends on: at.jku.dke.aisa.mapperC

• at.jku.dke.aisa.mapperA
• at.jku.dke.aisa.mapperB
• at.jku.dke.aisa.mapperC

Additionally, the installation of swipl is required, which can be downloaded from https://www.swi-
prolog.org/download/stable. The default installation path "C:/Program Files/swipl" should be chosen.
After installation, the system environment variable must be set for the bin folder of swipl (Variable
"Path" with vaLue "C:\Program Files\swipl\bin").

In order to run the sample KG system with Prolog integration:

1. Start Jena Fuseki with any of the given configurations (e.g.: AISA-fuseki-server-mem.bat) or
by configuring the jena fuseki server in Eclipse.

2. Run at.jku.dke.aisa.kg.sample.prolog.KGSystem
3. The output can be found in the fileoutput folder of the project.

Note: Jena Fuseki 3.17 does not work, rather use the given version 3.16 or try with the latest.

B.2 Running the preliminary performance studies
Before starting, make sure that swipl is installed and the system environment Path variable points to
C:\Program Files\swipl\bin.

1. Add all prefixes, data and shacl files, which should be mapped, to the input folder.

2. Start Jena Fuseki with any of the given configurations (e.g.: AISA-fuseki-server-
mem.bat) or by configuring the Jena Fuseki server in Eclipse.

3. Run Shacl2PrologLauncher (of the preferred mapping variant) in Eclipse.

4. The Output can be found in the output folder.

https://github.com/jku-win-dke/AISA-KG-Prolog-Mapper/
https://www.swi-prolog.org/download/stable
https://www.swi-prolog.org/download/stable

KG-PROLOG MAPPER

49

Note: Jena Fuseki 3.17 does not work, rather use the given version 3.16 or try with the latest.
Note: In case you want to restart the mapping, make sure to close the Jena Fuseki server first if started
manually.

Input files

There are 3 input files which are used for mapping: the SHACL schema, the data and the prefixes.

KG-Schema can be defined in multiple RDFS/SHACL files which will be unionend into the Schema-
Named-Graph in the KG. There must not be an overlap between these files, i.e., every SHACL shape
must be defined in exactly one RDFS/SHACL file, otherwise definitions in blank nodes get duplicated.

SHACL schema

The SHACL schema is uploaded to the Jena Fuseki sever at runtime. The shacl schema is used to create
a shacl graph and parse shacl shapes. The graph and the shapes are needed for creation of the SPARQL
queries and the Prolog facts.

All shacl schema files which are in the /input/schema/ folder will be uploaded to the Jena Fuseki server
and be used for mapping.

Example file: /input/schema/donlon-shacl.ttl

Data

The data is uploaded to the Jena Fuseki server at runtime. The data will be later retrieved by the
SPARQL queries and the results processed to Prolog facts.

All data files which are in the /input/data/ folder will be uploaded to the Jena Fuseki server and be
used for mapping.

Example file: /input/data/donlon-data.ttl

Namespace Prefixes

The prefix files should contain all prefixes which are used in the shacl schema and in the data file. These
prefixes are mainly required to abbreviate the URIs in the resulting fact files.

Example file: /input/prefixes.ttl

Output Files

Depending on which variant is executed, the mapper outputs either 1 or 2 files, which can be found in
the output folder: the SPARQL queries and the Prolog facts. Mapping variant A is the only mapper,
which outputs the SPARQL queries and the Prolog facts at runtime in separate files. Mapping variants
B and C only output Prolog rules in the facts file, which can later be loaded into Prolog.

SPARQL Queries

The SPARQL queries are generated at runtime, saved to a file and executed. The results of the query
execution are used for Prolog facts generation.

KG-PROLOG MAPPER

50

Example file: /output/queries.sparql

Prolog facts and rules

Mapping variant A: The Prolog facts are generated and saved to a file at runtime by processing the
results of the SPARQL queries and using the prefix mapping defined in the prefix file.

Mapping variants B and C: The Prolog rules are generated and saved to a file at runtime by using the
given shacl schema and the prefix mapping defined in the prefix file.

Example file: /output/facts.pl

Performance result

At the end of the execution of the mapping, the execution time is saved to a file. Next to the overall
execution time and the execution time of separate parts of the mapping, also the number of data
copies and the mapping variant is saved to the performance result. The number of data copies can be
changed in the Shacl2PrologLauncher if required. (Default value=1) Example file:
/output/performance_results.csv

How to start the performance tests

1. Go to Eclipse File->Export->Runnable Jar File.

2. Chose the main class of the mapping variant and the dedicated name
(MapperA.jar|MapperB.jar|MappperC.jar) and select library handling 'Package required
libraries into generated JAR'.

3. Export the jar file into the project folder of the respective mapping variant. (e.g.: /AISA-KG-

Prolog-Mapper/at.jku.dke.aisa.mapperA/MapperA.jar)

4. Make sure that Jena Fuseki server inclusive the right configuration files are in place (e.g.:
/AISA-KG-Prolog-Mapper/at.jku.dke.aisa.mapperA/apache-jena-

fuseki-3.16.0/AISA-fuseki-server-mem.bat)

5. Start start_performance_test.bat.

6. The results can be found in the output folder of the dedicated mapping variant.

B.3 Testing mapping variants by comparing resulting input facts
To check the proper functioning of the three mapping variants, we wrote a short test script in Prolog
that checks whether the different mapping variants produce the same facts. The test script test.pl can
be found in the root directory of the repository and covers all kind of data types and known edge cases.
Before the facts.pl files, which were generated by the three mapping variants, can be used for the
tests, a small modification is necessary. One line has to be added to the beginning of each file so that
each Prolog program is loaded into a separate Prolog module:

:- module(a,[]). to factsA.pl

:- module(b,[]). to factsB.pl

KG-PROLOG MAPPER

51

:- module(c,[]). To factsC.pl

The modified files factsA.pl, factsB.pl and factsC.pl can also be found in the root directory of the
repository. At the beginning of the test script, all facts.pl files are loaded. Then Prolog methods are
called, which will show up differences between the results of the files.

Example:

mismatch(inA_notinB,gml_TimePeriod(Graph, TimePeriod, BeginPosition,

EndPosition)) :-

 a:gml_TimePeriod(Graph, TimePeriod, BeginPosition, EndPosition),

 \+ b:gml_TimePeriod(Graph, TimePeriod, BeginPosition, EndPosition).

mismatch(inB_notinA,gml_TimePeriod(Graph, TimePeriod, BeginPosition,

EndPosition)) :-

 b:gml_TimePeriod(Graph, TimePeriod, BeginPosition, EndPosition),

 \+ a:gml_TimePeriod(Graph, TimePeriod, BeginPosition, EndPosition).

mismatch(inA_notinC,gml_TimePeriod(Graph, TimePeriod, BeginPosition,

EndPosition)) :-

 a:gml_TimePeriod(Graph, TimePeriod, BeginPosition, EndPosition),

 \+ c:gml_TimePeriod(Graph, TimePeriod, BeginPosition, EndPosition).

mismatch(inC_notinA,gml_TimePeriod(Graph, TimePeriod, BeginPosition,

EndPosition)) :-

 c:gml_TimePeriod(Graph, TimePeriod, BeginPosition, EndPosition),

 \+ a:gml_TimePeriod(Graph, TimePeriod, BeginPosition, EndPosition).

If the test succeeds the output looks as follows:
?- mismatch(X,Y).

false.

KG-PROLOG MAPPER

52

